

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Novel dihydrothieno[2,3-e]indazole derivatives as IkB kinase inhibitors

Hiroyasu Takahashi ^{a,*}, Mariko Shinoyama ^a, Takashi Komine ^a, Muneki Nagao ^b, Masashi Suzuki ^b, Hisatoshi Tsuchida ^a, Koichi Katsuyama ^a

ARTICLE INFO

Article history:
Received 28 October 2010
Revised 14 January 2011
Accepted 18 January 2011
Available online 22 January 2011

Keywords: IKK inhibitor IKK-β Dihydrothieno[2,3-e]indazole NF-κΒ

ABSTRACT

Synthesis, and structure–activity relationship (SAR) studies of the novel IKK- β inhibitors **2** and **3** characterized by a dihydrothieno[2,3-e]indazole core are presented. Compound **2t** was efficacious in a mouse model of LPS-stimulated TNF- α production.

© 2011 Elsevier Ltd. All rights reserved.

Nuclear Factor-κB (NF-κB) regulates the transcription of numerous genes implicated in the induction of inflammatory and immune responses and in the prevention of apoptosis. 1-3 In unstimulated cells, NF-κB is retained in the cytoplasm as an inactive form complexed with an inhibitory protein, IkB-α. The conversion of NF-κB into the active nuclear form, composed of p50 and p65 (Rel-A) subunits, is induced by LPS (lipopolysaccharide) or cytokines. These stimulants activate NF- κ B by inducing the phosphorylation and degradation of IkB- α , thereby allowing the rapid translocation of NF-κB from the cytoplasm to the nucleus. The enzyme responsible for the phosphorylation of IkB- α is IkB kinase (IKK), a multisubunit complex that contains two catalytic units (IKK- α and β) and a regulatory unit (IKK- γ or NEMO).⁴ Various studies have indicated that IKK- β plays a dominant role in the proinflammatory signal-induced phosphorylation of IkB-α.⁵ This result indicates that selective IKK-B inhibition can provide an effective treatment for inflammatory and autoimmune diseases. Even though a number of groups have reported structurally distinct IKK-β selective inhibitors, ⁶⁻⁸ thiophene amino carboxamidebased inhibitors^{9–11} as compound **1** have attracted considerable interest, because of their remarkable pharmacologic activity.¹²

In our research to find an original scaffold for IKK inhibitors, we developed the novel dihydrothieno[2,3-e]indazole derivatives **2** and **3** (Fig. 1).¹³ This functionalized tricyclic template mimics the topological disposition of the thiophene amino carboxamide-based IKK inhibitors.

E-mail address: hiroyasu.takahashi@mb.kyorin-pharm.co.jp (H. Takahashi).

We wish to report herein the synthetic details and the results of the structure–activity relationships (SAR) studies of the novel IKK- β inhibitors characterized by dihydrothieno[2,3-e]indazole moiety.

Synthesis of the dihydrothienol2.3-elindazole scaffold is outlined in Scheme 1. Formulation of 1.4-cyclohexanedione mono-ethvlene ketal (4) gave hydroxymethylidene ketal 5. Compound 5 was reacted with N-alkylhydrazine derivatives to give tetrahydroindazole isomers **6** and **7** as a regioisomeric mixture. ¹⁴ In addition, **6** and 7 were prepared by the alkylation of tetrahydroindazole 8 with appropriate alkyl halides. N1- or N2-substituted regioisomers were separated in either this or the following step by using chromatography or recrystallization. Deprotection of ketal 6 and/or 7 under acidic conditions gave tetrahydroindazolone 9 and/or 10. The aminothiophene moiety of 11, 12 was constructed from 9 and/or 10 via the Gewald reaction.¹⁵ One-pot condensation-cyclization sequences of 9, 10 with malononitrile and sulfur in the presence of morpholine proceeded regioselectively at the C5 position to afford dihydrothieno[2,3-e]indazole core 11 and/or 12 in a concise fashion. Initial attempts to construct the tricyclic core using cyanoacetamide (NCCH₂CONH₂) or ethyl cyanoacetate (NCCH₂CO₂Et) instead of malononitrile resulted in a complicated mixture. This result means that selection of the reagent, activated nitrile, is the dominant factor in this reaction. The cyano group of 11 and/or 12 was hydrolyzed with concentrated sulfuric acid to provide carboxamide 13 and/or 14, which were then converted to urea 2 and/or 3 by using sodium cvanate in the acidic condition.

Compounds synthesized by the above methodology were evaluated for their ability to inhibit the IKK- α and IKK- β catalyzed

^a Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd, 2399-1, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan

^b Development Research Laboratories, Kyorin Pharmaceutical Co., Ltd, 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan

st Corresponding author.

Figure 1.

(a) (b) (b)
$$R = 0$$
 (c) $R = 0$ (d) $R = 0$ (e) $R = 0$ (e) $R = 0$ (f) $R = 0$ (f) $R = 0$ (h) $R =$

Scheme 1. Reagents and conditions: (a) HCO₂-Me, NaH, THF/MeOH, reflux, 2 h; (b) RNHNH₂, MeOH, 0 °C, 1 h; (c) NH₂NH₂, H₂O, MeOH, 0 °C, 1 h; (d) RX, Cs₂CO₃, CH₃CN, 80 °C, 1–3 h; (e) 1 N HCl, acetone, 60 °C, 1 h; (f) NCCH₂CN, S8, morpholine, EtOH–THF, rt, 1 h; (g) concd H2SO4, 40 °C, 3 h; (h) NaCNO, AcOH–H₂O, rt, 2 h.

phosphorylation of IkB- α substrate, and a cell-based assay was used to measure the ability of compounds to inhibit LPS-induced TNF- α production in human monocyte THP-1 cells.¹⁶

The results shown in Table 1 reveal the effects of the substitution position on the indazole moiety. Substitution of the N-2 or N-3 position with an n-propyl or p-fluorobenzyl group was tolerated in the enzyme assay, and two sets of compounds, ${\bf 2a}$, ${\bf b}$ and ${\bf 3a}$, ${\bf b}$, showed moderate to good potency (the IC₅₀'s range was from 0.2 to 2.9 μ M). Compound ${\bf 3b}$ was over ten times more potent than the n-propyl-substituted derivative ${\bf 3a}$ and five times more potent than the 2-substituted isomer ${\bf 2b}$. These results suggest a tentative SAR for the indazole substituent, with N3-substitution showing more potent enzyme activity than that of N2-substitution. This

tendency between in vitro activity and the substitution position is reversed in the cell-based assay. 2-Substituted derivatives $\bf 2a$, $\bf b$ showed modest cellular activity at 5.2 and $\bf 2.5~\mu M$, but their potency was five- to eight-fold greater than the cellular activity of 3-substituted $\bf 3a$, $\bf b$. This means the gain in the intrinsic potency of 3-substituted derivatives $\bf 3a$, $\bf b$ did not translate sufficiently to enhanced cellular activity. We therefore decided to focus our further investigations on 2-substituted derivatives.

According to the above investigation, our methodology to synthesize N2-substituted isomers **2c–w** was modified in a regioselective manner (Scheme 2). For the regioselective synthesis of N2-substituted intermediate **6**, bis-electrophilic hydroxyketone **5** was converted to enol-acetate **15**, which was expected to react

Table 1 $IKK-\beta$ inhibitory activities and cell-based assay of the N-2 and N-3 substituted derivatives

Compound	R	In vitro IC_{50} (μM)	
		ІКК-β	THP-1
2a	n-Pr	2.9	5.2
3a		2.2	42
2b 3b		0.9 0.2	2.5 12

Scheme 2. Reagents and conditions: (a) HCO₂Me, NaOEt, THF, 0 °C, reflux, 3 h, then Ac₂O, rt, 1 h; (b) EtOH, reflux, 1 h; (c) TFA, CH₂Cl₂, rt, 2 h (the ratio of the desired 6 to its regioisomer 7 was approximately 10:1); (d) 1 N HCl, acetone, 60 °C, 1 h; (e) NCCH₂CN, S₈, morpholine, EtOH–THF, rt, 1 h; (f) concd H₂SO₄, 40 °C, 3 h (g) NaCNO, AcOH–H₂O, rt, 2 h.

Table 2SAR of 2-alkylsubstituted derivatives

Compound	R	In vitro IC ₅₀ (μM)	
		ΙΚΚ-β	THP-1
2c	i-Pr	2.3	4.6
2d	n-Bu	2.7	4.0
2e	n-Hex	8.4	NT ^a
2f		4.2	5.6
2g	N	4.5	>30
2h	N	4.8	24
2i	N	2.3	9
2j	MeO	11	NT ^a
2k	Me -N Me	8.8	NT ^a
21	N Me	4.6	5.1

^a NT = not tested.

preferably with nucleophiles at the β-position. Actually, the condensation of **15** with the various N-Boc-protected alkylhydrazines **16**, followed by deprotection of the N-Boc group with TFA gave the desired condensation products **6c**-**y** regioselectively. Conversion from **6c**-**y** to **2c**-**y** was achieved as described above.

The enzyme activity and cellular potency on various 2-alkylsubstituted derivatives $2\mathbf{c-l}$ are shown in Table 2. Substitution at the 2-position with isopropyl, n-butyl, or benzyl groups was tolerated $(2\mathbf{c-d}, 2\mathbf{f})$, whereas elongation of the alkyl chain to n-hexyl $2\mathbf{e}$

Table 3 SAR of 2-alkylaminosubstituted series

Compound	R	In vitro IC ₅₀ (μM)	
		ІКК-β	THP-1
21	N Me	4.6	5.1
2m	N	7.1	2.5
2n ^a		3.0	1.7
20 ^a	N	2.2	0.5
2р	N-	4.8	1.2
2q ^a	N	>10	NT ^b

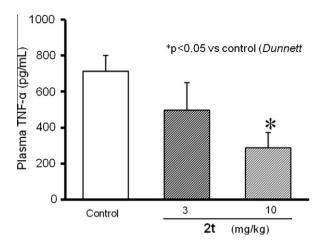
^a Racemic form.

b NT = not tested

decreased the potency. A benzyl substituent could be replaced by a 2-, 3-, or 4-pyridylmethyl substituent that showed moderate enzyme potency (IC_{50} 's range was from 2.3 to 4.8 μ M). Incorporation of hydrophilic substituents such methoxyethyl **2j** and dimethylaminoethyl derivatives **2k** resulted in decreased enzyme potency compared with **2d**. In contrast, *N*-benzyl *N*-methylaminoethylsubstituted derivative **2l** showed moderate enzyme and cellular

Table 4 SAR of 3-piperidinyl series

Compound	R	In vitro IC ₅₀ (μM)		
		IKK-β	IKK-α	THP-1
20		2.2	>100	0.5
2r	CI	2.5	>100	0.6
2s	CIF	0.5	41	4.4
2t	F	1.7	>100	0.8
2u	F	3.1	NT ^a	0.3
2v	H_2N	0.5	9	0.5
2w	HOF	0.9	NT ^a	0.7
2x	MeOF	1.9	>100	3.8
2 y	Me N F	>10	NT ^a	NT ^a


^a NT = not tested.

potency. This result suggests that the *N*-benzyl group of **2l** would be a key fragment for further optimization.

Therefore, we anticipated that the orientation effect of the *N*-benzyl moiety might be effective for increasing potency. As such, various cyclic amino derivatives 2m-q were prepared in the same manner as described in Scheme 2 (Table 3). In this series, four- to six-membered cyclic amino derivatives showed moderate enzyme potency, whereas the activity of seven-membered azepanyl derivative 2q dropped. In this series, 3-piperidinyl analog 2o showed two-fold more potent enzyme activity (IC₅₀'s of $2.2 \, \mu$ M) than 2l. Compound 2o also showed good cellular activity at IC₅₀'s of $0.5 \, \mu$ M, that is, it was 10-fold more potent than 2l, making it clear that the *N*-benzyl 3-piperidinyl motif has a preferable combination with regard to enzyme and cellular potency.

In addition to investigating N-benzyl derivatives, we embarked upon further exploration of the benzyl group of 2o. The enzyme and cell-based activities of 3-piperidinyl derivatives are shown in Table 4. To assess the kinase selectivity, some compounds of the current series were tested against IKK- α .

The introduction of a chloro group to the p-position was tolerated ($2\mathbf{r}$). Interestingly, additional introduction of a fluoro atom at the o-position ($2\mathbf{s}$) increased the enzyme potency approximately

Figure 2. Effect of **2t** on TNF- α concentrations in LPS-stimulated mice.

five-fold over that of $2\mathbf{r}$. The chloro atom of $2\mathbf{s}$ could be replaced by other polar functional groups such amino or hydroxyl groups $2\mathbf{v}$, $2\mathbf{w}$ with enzyme potency. On the other hand, the potency of p-methoxy-substituted $2\mathbf{x}$ was decreased to less than half that of $2\mathbf{w}$, and the more hindered acetamide-substituted $2\mathbf{y}$ also dropped in potency. These results suggest that there are polar interaction(s) around the benzylic p-positions. Compounds $2\mathbf{r}$, $2\mathbf{t}$ - \mathbf{w} showed a good cellular potency IC₅₀ of around $0.5~\mu$ M, and some compounds showed moderate to good kinase selectivity for IKK- α ($18 \sim$ over 80-fold). Among these novel dihydrothieno[2,3-e]indazole derivatives, 2,4-difluoro-substituted $2\mathbf{t}$ offered the preferred overall profile with IKK- β potency, with more than 50-fold selectivity over IKK- α and good cellular potency.

The in vivo efficacy of the selected compounds 2t was next assessed in a mouse model of LPS-stimulated TNF- α production. The Mice were dosed orally with 2t at 3 mg/kg and 10 mg/kg, 1 h prior to LPS administration. The TNF- α levels were then measured 90 min later, as shown in Figure 2, and oral dosing of 2t at 10 mg/kg was found to inhibit TNF- α production in a dose-dependent manner. Other potent compounds 2v and 2w were not effective in this in vivo assay.

In summary, we developed a novel series of IKK-β inhibitors possessing a dihydrothieno[2,3-*e*]indazole core. This series shows potent in vitro activity in relevant biological assays, and compound **2t** was efficacious in a mouse inflammation model. Further investigation of the pharmacological profiles of these novel compounds is in progress.

Acknowledgments

We gratefully acknowledge Hiromi Fujiya and Megumi Wada for their support and synthetic contributions.

We are also thank Masahiro Ueno and Hitoshi Inoue for their useful discussions.

References and notes

- 1. Tak, P. P.; Firestein, G. S. J. Clin. Invest. 2001, 107, 7.
- 2. Li, Q.; Verma, I. M. Nat. Res. Rev. Immunol. 2002, 2, 725.
- 3. Yamamoto, Y.; Gaynor, R. B. Trends Biochem. Sci. 2004, 29, 72.
- 4. Karin, M.; Delhase, M. Semin. Immunol. 2000, 12, 85.
- 5. Delhause, M.; Hayakawa, M.; Chen, Y.; Karin, M. Science 1999, 284, 309.
- 6. Pitts, W. J.; Kempson, J. Annu. Rep. Med. Chem. 2008, 43, 155.
- Crombie, A. L.; Sum, F.; Powell, D. W.; Hopper, D. W.; Torres, N.; Berger, D. M.; Zhang, Y.; Gavriil, M.; Sadler, T. M.; Armdt, K. Bioorg. Med. Chem. Lett. 2010, 20, 3821
- 8. Liddle, J.; Bamborough, P.; Barker, M. D.; Campos, S.; Cousins, R. P. C.; Cutler, G. J.; Hobbs, H.; Holmes, D. S.; Ioannou, C.; Mellor, G. W.; Morse, M. A.; Payne, J. J.; Pritchard, J. M.; Smith, K. J.; Tape, D. T.; Whitworth, C.; Williamson, R. A. Bioorg. Med. Chem. Lett. 2009, 19, 2504.

- Baxter, A.; Brough, S.; Cooper, A.; Floettmann, E.; Foster, S.; Harding, C.; Kettle, J.; McInally, T.; Martin, C.; Mobbs, M.; Needham, M.; Newham, P.; Paine, S.; St-Gallay, S.; Salter, S.; Unitt, J.; Xue, Y. Bioorg. Med. Chem. Lett. 2004, 14, 2817.
- Bonafoux, D.; Bonar, S.; Christine, L.; Clare, M.; Donnelly, A.; Guzova, J.; Kishore, N.; Lennon, P.; Libby, A.; Mathialagan, S.; McGhee, W.; Rouw, S.; Sommers, C.; Tollefson, M.; Tripp, C.; Weier, R.; Wolfson, S.; Min, Y. Bioorg. Med. Chem. Lett. 2005, 15, 2870.
- 11. Expert Opin. Ther. Pat. 2005, 15, 343.
- Birrell, M. A.; Wong, S.; Hardaker, E. L.; Catley, M. C.; McCluskie, K.; Collins, M.; Haj-Yahia, S.; Belvisi, M. G. Mol. Pharmacol. 2006, 69, 1791.
- 13. Takahashi, H.; Fujiya, H. JP 2010006717, 2010.
- Josef, K. A.; Dandu, R. D.; Tao, M.; Hudkins, R. L. J. Heterocycl. Chem. 2006, 43, 719.
- LaPorte, M. G.; Lessen, T. A.; Leister, L.; Cebzanov, D.; Amparo, E.; Faust, C.; Ortlip, D.; Bailey, T. R.; Nitz, T. J.; Chunduru, S. K.; Young, D. C.; Burns, C. J. Bioorg. Med. Chem. Lett. 2006, 16, 100.
- 16. Measurement of IKK- α and IKK- β inhibitory activity: The IKK- α and IKK- β inhibitory activity of the compounds was determined with the following assay that measures the phosphorylation of IkB- α substrate by the respective kinases. The enzymes used in the assay were human IKK- α and IKK- β . Biotinconjugated IkB- α peptide (Bio-IkB peptide) was used as the IkB- α substrate (21 amino acid residues). In brief, 0.2 μ M Bio-IkB peptide solution (100 μ L/ μ ell) was added to a 96- μ ell avidine-coated plate and incubated for 60 min at 25 °C.
- After the incubation, the plate was washed three times with PBS-0.05% Tween20. PBS containing 3% BSA (200 $\mu L/well)$ was added to the plate and incubated for 60 min at 25 °C. After incubation, the plate was washed three times with PBS-0.05% Tween20. The assay buffer (90 $\mu L/well)$ containing IKK, 25 mM Tris (pH 7.4), 2 mM DTT, 0.01% Tween 20, and the test compound solution (5 $\mu L/well)$ containing 1% DMSO were added to the plate and incubated for 10 min at 25 °C. Reactions were initiated by adding a solution (5 $\mu L/well)$ of 60 μ M ATP and 200 mM MgCl $_2$ and incubated for 60 min at 25 °C. After the incubation, the plate was washed three times with PBS-0.05% Tween 20. Mouse monoclonal antibody for phospho IkB- α (1:7000, Cell signaling, 100 $\mu L/well)$ was then added to the plate and incubated for 16 h at 4 °C. After the incubation, the plate was washed three times with PBS-0.05% Tween 20. HRP-conjugated rabbit polyclonal antibody for mouse IgG (1:7000, GE Healthcare, 100 $\mu L/well)$ was added to the plate and incubated for 60 min at 25 °C. After the plate was washed, the amount of phosphorylation of IkB- α substrate was measured using TMB reagent (100 $\mu L/well)$
- Measurement of TNF-α inhibitory activity: Human monocyte THP-1 cells $(2 \times 105 \text{ cells/well})$ was incubated with serum-free RPMI-1640 containing the test compounds and LPS $(0.2 \, \mu\text{g/well})$ for 6 hr at 37 °C. TNF-α concentrations in the conditioned media were measured by ELISA methods.
- 17. Female DBA/2 mice were administered 2r by peroral gavage. After 60 min, LPS (1 μg/body) dissolved in 0.2 mL of saline was injected intraperitoneally. After 90 min, plasma TNF-α levels were analyzed with a commercial TNF-α ELISA kit.